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The transient adjustment process of a compressible fluid in a rapidly rotating pipe is
studied. The system Ekman number E is small, and the assumptions of small Mach
number and the heavy-gas limit (γ = 1.0) are invoked. Fluid motion is generated
by imposing a step-change perturbation in the temperature at the pipe wall Tw .
Comprehensive analytical solutions are obtained by deploying the matched asymptotic
technique with proper timescales O(E−1/2) and O(E−1). These analytical solutions are
shown to be consistent with corresponding full numerical solutions. The detailed
profiles of major variables are delineated, and evolution of velocity and temperature
fields is portrayed. At moderate times, the entire flow field can be divided into two
regions. In the inner inviscid region, thermo-acoustic compression takes place, and
the process is isothermal–isentropic with the angular momentum being conserved.
In the outer viscous region, diffusion of angular momentum occurs. The principal
dynamic mechanisms are discussed, and physical rationalizations are offered. The
essential differences between the responses of a compressible and an incompressible
fluid are highlighted.

The issue of stability of the analytically obtained flow is addressed by undertaking
a formal stability analysis. It is illustrated that, within the range of parameters of
present concern, the flow is stable when ε ∼ O(E).

1. Introduction
This paper is concerned with the flow of a viscous, thermally conducting com-

pressible gas contained in a rapidly rotating infinitely long cylindrical pipe. In the
basic state, the pipe rotates steadily about the longitudinal central axis at constant
rotation rate, and the pipe and gas are in thermal equilibrium at constant tempera-
ture T ∗00. Here, the rotation rate is sufficiently high that the compressibility effect, as
represented by finite values of the Mach number M of the fluid system, is significant.
This also implies that the effective acceleration in the radial direction overwhelms the
conventional Earth’s gravitational acceleration. Under these circumstances, the gas
in the pipe is in rigid-body rotation, and the density increases exponentially in the
radially outward direction (e.g. Sakurai & Matsuda 1974; Bark & Bark 1976; Miles
1981). Interest is focused on the flow which arises out of this basic state of rigid-body
rotation when a small temperature perturbation is imposed on the pipe wall.
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The basic physics of the problem setting is relevant to high-speed rotating machinery
(e.g. Torii & Yang 1994) and classical geophysical and astrophysical fluid systems
(e.g. Gans 1975). Several studies have been reported on compressible flows from an
initial state of solid-body rotation. Most were concerned with wave motions of an
inviscid, perfect gas (e.g. Frankel 1959; Morton & Shaughnessy 1972; Gans 1974;
Miles 1981). The stability of compressible swirling flows was dealt with by Gans
(1975) and Lalas (1975). It is important to note that these previous investigations
used inviscid approaches; therefore, little serious attempt was made to illuminate the
viscous–inviscid interaction over the diffusive timescale. It is stressed that the thrust
of this paper is to explore the transient diffusive flow process from one established
basic state to another.

It should be emphasized from the outset that, if the fluid is incompressible, the
formulation is readily reduced to that of a straightforward axisymmetric diffusion
problem. In this case, the transient flow can be described by using the Fourier–Bessel
series solution (e.g. Batchelor 1967), which is characterized by the diffusion timescale,
as can easily be inferred from the nature of the physical process.

For a compressible fluid, however, the whole picture is substantially different from
the above-described simplistic diffusion process of an incompressible fluid. Of major
importance now is the strong dynamic interplay between azimuthal and meridional
velocities and thermal fields. In this paper, analytical methods are utilized to study
time-dependent flows of a compressible fluid when the external perturbation is small so
that linearization is permitted. Because of the high rotation rate of the pipe, the overall
system Ekman number is very small. The results of the analysis clearly illustrate that,
at early times after a small perturbation is given to the pipe wall, the flow field can be
divided into two distinctive zones: a diffusive boundary layer near the pipe wall and
an inner inviscid core. This early-time behaviour is a peculiar feature of compressible
flows. At large times, the diffusion process, which is qualitatively similar to that of in-
compressible flows, dominates the entire flow field. The present task is to delineate the
flow evolution by means of the matched asymptotic technique with proper timescales.

The paper is organized as follows. The mathematical formulation is stated in
§ 2. Asymptotic analyses are performed in § 3 for short times and in § 4 for longer
diffusive times. In § 5, a stability analysis is conducted to ascertain the feasibility of the
solutions. Physical interpretations of the solutions are given in § 6, and comparisons
of the present analytical results with numerical solutions are shown. The concluding
remarks are summarized in § 7.

2. The problem formulation
In the basic state, a compressible gas in an infinitely long cylindrical pipe of

radius R0, which rotates about the z-axis at constant rotation rate Ω, is in rigid-body
rotation. The cylindrical coordinates (r, θ), together with the corresponding velocity
components (u, v), are selected, as sketched in figure 1. Both the gas and the pipe wall
are assumed to be isothermal at T ∗00. For a perfect gas, the density field of this basic
state can be expressed as (e.g. Bark & Bark 1976)

ρ00[≡ ρ∗00(r
∗)/ρ∗00(R0)] = exp [ 1

2
γM2(r2 − 1)]. (1)

Superscript ∗ denotes dimensional values and subscript 00 indicates the undisturbed
basic state, M[≡ ΩR0/(γRT

∗
00)

1/2] the Mach number at the wall, γ the ratio of specific
heats of the gas, r ≡ r∗/R0, and R the gas constant. In what follows, it is assumed
that M < 1.0 and the assumption of the heavy-gas limit is invoked such that γ is set
to be γ = 1.0 (Sakurai & Matsuda 1974; Bark, Meijer & Cohen 1979).
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Figure 1. Flow configuration and coordinates.

Now, a small perturbation from the basic state is considered. The magnitude of the
perturbation is gauged by the Rossby number ε ≡ Tp/T ∗00, where Tp is the size of the
thermal perturbation in the system. A consistent non-dimensionalization scheme is
implemented, as guided by previous studies (e.g. Sakurai & Matsuda 1974; Hultgren,
Meijer & Bark 1981):

u = (u, v) = γM2up/εΩR0, p = pp/ερ∗00(R0)RT
∗
00,

T = Tp/εT ∗00, ρ = ρp/ερ∗00(R0), t = t∗Ω,

in which ρp, pp, T p and up represent the dimensional perturbations of density, pressure,
temperature and velocity, respectively.

The non-dimensional governing time-dependent compressible-fluid Navier–Stokes
equations, written in the cylindrical frame rotating at Ω, are (e.g. Sakurai & Matsuda
1974):

M2 ∂ρ

∂t
+

1

r

∂

∂r
(rρ00 u) = 0, (2)

ρ00

(
∂u

∂t
− 2v

)
−M2rρ = −∂p

∂r
+ E

[(
∇2 − 1

r2

)
u+

(
1

3
+ β̄

)
∂

∂r
(∇ · u)

]
, (3)

ρ00

(
∂v

∂t
+ 2u

)
= E

(
∇2 − 1

r2

)
v, (4)

ρ00σ
∂T

∂t
= E∇2T , (5)

p = ρ+ ρ00 T . (6)

In the above, β̄ in (3) denotes the ratio of the expansion and shear viscosities, the
Prandtl number σ ≡ µCp/k, µ the coefficient of viscosity, Cp the specific heat at
constant pressure, k the coefficient of thermal conductivity, and the Ekman number
E ≡ µ/[ρ∗00(R0)ΩR

2
0].
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In the present paper, the perturbation, which drives the fluid motion, is assumed
to be a change in the wall temperature, Tw . Accordingly, the initial and boundary
conditions are stipulated as

u = v = T = ρ = 0 at t = 0, (7a)

and

u(t, r = 1) = 0, v(t, r = 1) = 0, T (t, r = 1) = Tw. (7b)

3. Asymptotic analysis for short times t ∼ O(E−1/2)

For a general discussion of rapidly rotating compressible-fluid flows, it is necessary
to examine the early-time behaviour, which is shorter than the diffusive time [t ∼
O(E−1)]. This corresponds to the stage when the thermal front, initiated by the
sidewall temperature change, is still close to the wall. Time is scaled as τ = E−mt,
0 < m < 1. In view of consistent scalings, the dependent variables are expanded in
powers of E(1−m)/2. In the ensuing discussion, without loss of generality, m is set to
be 1/2 because any choice of m gives the same leading-order equation. The present
analysis employs the matched asymptotic method, and the results will show that the
boundary layers are coupled to the interior core.

3.1. Boundary-layer solution

A stretched radial coordinate η = (1− r)/E1/4 is introduced. Expansions are made in
the form

ϕB(τ, η) =

∞∑
n=0

ϕBn (τ, η)En/4,

in which ϕ stands for u, v, T , ρ or p, and superscript B denotes the boundary-layer
variables.

Upon substituting the expansions into the governing equations, the leading-order
equations are

M2 ∂ρ
B
0

∂τ
− ∂uB3

∂η
= 0, (8)

2vB0 +M2ρB0 +
∂pB1
∂η

= 0, (9)

∂vB0
∂τ

=
∂2vB0
∂η2

, (10)

σ
∂TB

0

∂τ
=
∂2TB

0

∂η2
, (11)

ρB0 + TB
0 = 0. (12)

As seen in (10) and (11), in the initial time of O(E−1/2) after the perturbation is
imposed impulsively on the wall, the diffusion process progresses over the distance
O(E1/4) for the azimuthal velocity and temperature. In the light of the initial and
boundary conditions of (7), the solutions of (10) and (11) are easily obtained:

vB0 (τ, η) = 0, (13a)

TB
0 (τ, η) = Twerfc (η/2

√
τ/σ). (13b)
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For the leading-order density field, (8) and (12) yield

uB3 (τ, η) =
M2Tw√
πστ

exp

(
−ση

2

4τ

)
, (13c)

ρB0 (τ, η) = −Twerfc(η/2
√
τ/σ). (13d)

These describe the leading-order variables in the boundary layer. The analysis pro-
ceeds to tackle the interior region.

3.2. Interior solution

As pointed out previously, over the early-time duration t ∼ O(E−1/2), the diffusion
is significant only in a narrow zone of thickness O(E1/4) adjacent to the wall, and
the diffusion effect can be neglected in the interior region 0 6 r 6 [1 − O(E1/4)].
For the interior region, therefore, the length is scaled as r ∼ O(1), and expansions,
ϕI (τ, r) =

∑∞
n=0 ϕ

I
n(τ, r)E

n/4, are carried out for the variables, denoted by superscript
I . Then, the leading-order equations are

M2 ∂ρ
I
1

∂τ
+

1

r

∂(rρ00u
I
3)

∂r
= 0, (14)

−2ρ00v
I
1 −M2rρI1 +

∂pI1
∂r

= 0, (15)

∂vI1
∂τ

+ 2uI3 = 0, (16)

ρ00σ
∂T I

1

∂τ
= 0, (17)

pI1 = ρI1 + ρ00T
I
1 . (18)

The above equations satisfy the initial conditions vIT = pI1 = ρI1 = TI
1 = 0. Further-

more, an inspection of (17) and (18) leads to

TI
1 = 0, (19a)

and

ρI1 = pI1. (19b)

Combining (15) and (19b) produces

vI1 =
1

2ρ00

[
−M2rpI1 +

∂pI1
∂r

]
. (19c)

From (14), (16) and (19), a single equation for pressure is obtained:

∂2pI1
∂r2

+

(
1

r
−M2r

)
∂pI1
∂r
− 6M2pI1 = 0. (20)

The associated boundary conditions for (20) are

∂pI1/∂r = 0 at r = 0, (21a)

and, from the condition that u = uI3(τ, r → 1) + uB3 (τ, η → 0) = 0 at r = 1, one has

−M2pI1 +
∂pI1
∂r

=
8M2Tw

√
τ√

πσ
. (21b)
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Also, from the condition of total mass conservation
∫ 1

0
rρdr = 0, one finds∫ 1

0

rpI1dr =
2Tw
√
τ√

πσ
. (21c)

From (20), by employing an expansion of the form pI1(r, τ) =
∑∞

n=0 M
2npI1(n)(r, τ), all

orders of the complete series solution can be found, i.e.

∂2pI1(0)

∂r2
+

1

r

∂pI1(0)

∂r
= 0, (22a)

∂2pI1(n)

∂r2
+

1

r

∂pI1(n)

∂r
= r

∂pI1(n−1)

∂r
+ 6pI1(n−1) (n > 1). (22b)

With the aid of (21), the solutions to (22) up to the third order can be found:

pI1(0)(r, τ) =
4Tw
√
τ√

πσ
, (23a)

pI1(1)(r, τ) =
Tw
√
τ√

πσ
(6r2 − 3), (23b)

and

pI1(2)(r, τ) =
Tw
√
τ√

πσ

(
12

5
r5 − 3r3 +

18

35

)
. (23c)

The higher-order solutions can, in principle, be obtained by using a recursive proce-
dure from (21) and (22).

Combining the above developments, the uniformly convergent solutions for the
interior region in the early stage, in response to the step-change perturbation in the
wall temperature, can be written as

vI1 =
Tw
√
τ

ρ00

√
πσ
{M2(4r) +M4(6r4 − 3r3 − 3r)}+ O(M6), (24a)

uI3 =
−Tw

4ρ00

√
πστ
{M2(4r) +M4(6r4 − 3r3 − 3r)}+ O(M6), (24b)

ρI1 = pI1 =
Tw
√
τ√

πσ
{4 +M2(6r2 − 3) +M4(12r5/5− 3r3 + 18/35)}+ O(M6), (24c)

and

TI
1 = 0. (24d)

As is evident in the equations, for the early times up to t ∼ O(E−1/2), the azimuthal
velocity and density are O(E1/4). Specifically, in the case of an impulsive heating
(cooling) of the pipe wall, the resulting azimuthal velocity in the interior increases
(decreases). The physical rationalizations may be stated as follows. If a sudden
heating (cooling) is applied to the pipe wall, the fluid in the vicinity of the wall
expands (shrinks), which generates a radially inward (outward) flow in the interior
region. This, in turn, causes the azimuthal velocity to increase (decrease) due to the
conservation of angular momentum in the interior region. Concomitantly, the density
increases (decreases) since compression (expansion) is achieved by the radially inward
(outward) fluid motion. In summary, an impulsive thermal loading at the pipe wall
gives rise to an interior fluid motion of magnitude O(E1/4).
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4. Asymptotic solution at large times t ∼ O(E−1)

To delineate the behaviour on a diffusive timescale, time is scaled τ1 = Et. Also, for
a meaningful problem formulation, appropriate scalings are introduced, i.e. u ∼ O(E),
v ∼ O(1), T ∼ O(1), ρ ∼ O(1), p ∼ O(1) (Sakurai & Matsuda 1974; Bark & Bark
1976). Then, the leading-order equations are

M2 ∂ρ

∂τ1

+
1

r

∂(rρ00u)

∂r
= 0, (25a)

−2ρ00v −M2rρ = −∂p
∂r
, (25b)

ρ00

∂v

∂τ1

+ 2ρ00u =

(
∇2 − 1

r2

)
v, (25c)

ρ00σ
∂T

∂τ1

= ∇2T , (25d)

p = ρ+ ρ00T , (25e)

where ρ00 = exp
(− 1

2
M2(r2 − 1)

)
.

Under the constraint that M < 1.0, the system of (25) can be tackled by use of the
standard series expansion technique. The attendant initial and boundary conditions
are re-stated:

T (r, τ1 = 0) = 0, v(r, τ1 = 0) = 0,

T (r = 1, τ1) = Tw, v(r = 1, τ1) = 0.

}
(26)

For example, in order to solve (25d), the temperature is decomposed into

T = Tw

[
1 +

∞∑
n=1

exp (−β2
nτ1/σ)Tn(r)

]
+ TwM

2

∞∑
n=1

Fn(r, τ1), (27a)

and Tn, Fn and βn are expanded in powers of M2:

Tn = Tn0 +M2Tn1 +M4Tn2 + · · · , (27b)

Fn = Fn1 +M2Fn2 + · · · , (27c)

βn = βn0 +M2βn1 +M4βn2 + · · · . (27d)

Substitution of (27) into (25d) produces a sequence of ordered equations, which
leads to a well-posed Sturm–Liouville-type problem.

(i) The zeroth-order solution
Combining (25d), (26) and (27), one finds

d2Tn0

dr2
+

1

r

dTn0
dr

+ β2
n0 Tn0 = 0, (28a)

Tn0(1) = 0 and

∞∑
n=1

Tn0(r) = −1. (28b)

The solution of the above equation is readily found:

Tn0(r) = an0J0(rβn0), (29)
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in which an0 is a coefficient to be determined by using (28b), i.e.

an0 =
−2

βn0J1(βn0)
,

and βn0 is the nth positive zero of J0(x).

(ii) The first-order solution
The function Fn1(r, τ1) is shown to satisfy the following diffusion equation:

σ
∂Fn1

∂τ1

= ∇2Fn1. (30a)

The initial and boundary conditions to (30a) can be derived by considering (26) and
(27):

Fn1(r, τ1 = 0) = 0, (30b)

and

Fn1(r = 1, τ1) = − exp (−β2
n0 τ1/σ)Tn1(1), (30c)

in which Tn1 is to be determined later.
From (25d), (26), (27) and (30), the first-order equation reduces to

d2Tn1

dr2
+

1

r

dTn1
dr

+ β2
n0Tn1 = −2βn0 βn1 Tn0 +

(1− r2)

2
β2
n0 Tn0, (31a)

and
∞∑
n=1

Tn1(r) = 0. (31b)

The solution to (31) can be constructed as

Tn1(r) = An1 J0(rβn0) + Bn1 r
3J1(rβn0) + Cn1 r

2J0(rβn0), (32)

in which the constants An1, Bn1, Cn1 and βn1 are to be determined in view of (31b):

βn1 =
βn0

4
+

1

6βn0
,

An1 =
−2

J2
1 (βn0)

∫ 1

0

rJ0(rβn0)

∞∑
k=1

(Bk1r
3J1(rβk0) + Ck1r

2J0(rβk0))dr

=
1

J1(βn0)

(
1

3β3
n0

− 1

6βn0

)
+

βn0

J1(βn0)

∞∑
k=1

(k 6=n)

{
4β2

k0

(β2
n0 − β2

k0)
3
− 1

3(β2
n0 − β2

k0)

}
,

Bn1 =
1

6J1(βn0)
,

Cn1 =
1

6βn0J1(βn0)
.

The formal solution of the cylindrical diffusion equation, (30)–(32), is a classical
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one (e.g. Carslaw & Jaeger 1959, pp. 198–200):

Fn1(r, τ1) = − 1

3σ
exp (−β2

n0τ1/σ)
τ1βn0J0(rβn0)

J1(βn0)
+

1

3

∞∑
k=1

(k 6=n)

βk0

(β2
n0 − β2

k0)

J0(rβk0)

J1(βk0)

×
[
exp

(
−β

2
n0

σ
τ1

)
− exp

(
−β

2
k0

σ
τ1

)]
. (33)

Summarizing the analytical developments, the solution for temperature is expressed
as

T (r, τ1) = T (0) +M2T (1) + O(M4),

where

T (0) = Tw

[
1− 2

∞∑
n=1

exp

(
−β

2
n0τ1

σ

)
J0(rβn0)

βn0J1(βn0)

]
, (34a)

T (1) = Tw

∞∑
n=1

[
Fn1(r, τ1) + exp

(
−β

2
n0τ1

σ

)(
Tn1(r)− 2τ1βn0βn1

σ
Tn0(r)

)]
. (34b)

As anticipated, the above large-time behaviour is revealing. The zeroth-order solu-
tion, as is discernible in (34a), represents the straightforward diffusion process, which
is the same as for the case of an incompressible fluid. The compressible-fluid effect is
embedded in the first-order solution.

The solutions for density, pressure, radial and azimuthal velocities can be found in
a similar manner. The dependent variables are expanded as follows:

u = u(0) +M2u(1) + · · · ,
v = v(0) +M2v(1) + · · · ,
ρ = ρ(0) +M2ρ(1) + · · · ,
p = p(0) +M2p(1) + · · · .

One finds, from (25a) and (25c),

u(0) = v(0) = 0. (35)

It follows, from (25b), that ∂p(0)/∂r = 0, therefore

p(0) = f(τ1), (36)

and

ρ(0) = −T (0) + f(τ1). (37)

In the above, f(τ1) is an arbitrary function to be determined by the global mass

continuity condition
∫ 1

0
ρr dr = 0:

f(τ1) = Tw

{
1− 4

∞∑
n=1

exp

(
−β

2
n0τ1

σ

)
1

β2
n0

}
. (38)

From (25a), u(1) is given by

u(1) =
2

σ
Tw

∞∑
n=1

exp

(
−β

2
n0

σ
τ1

)
J1(rβn0)− rJ1(βn0)

J1(βn0)
. (39)
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The solution u(1) in (39) does not converge to zero as τ1 → 0, because u is O(E3/4) at
t ∼ O(E−1/2). It is recalled that u is scaled O(E) for t ∼ O(E−1).

From (25c), one can obtain the equation for v(1) and the auxiliary conditions:

∂v(1)

∂τ1

+ 2u(1) =

(
∇2 − 1

r2

)
v(1), (40)

v(1)(τ1 = 0, r) = 0 and v(1) = (τ1, r = 0) = 0.

The solution to (40) can be found by the Laplace transform method:
In the case of σ = 1

v(1) = 4Tw

∞∑
n=1

{(
r − J1(rβn0)

J1(βn0)

)
τ1 exp (−β2

n0τ1) + Gn(τ1, r)

}
, (41a)

in which

Gn = 2

∞∑
k=1

{
exp (−β2

n0τ1)− exp (−γ2
kτ1)

(γ2
k − β2

n0)
2

− τ1 exp (−β2
n0τ1)

(γ2
k − β2

n0)

}
β2
n0J1(γkr)

γkJ0(γk)
,

and γk is the kth positive zero of J1(x).
In the case of σ 6= 1

v(1) = 4Tw

∞∑
n=1

{(
r − J1(rβn0)

J1(βn0)

)
exp (−β2

n0τ1/σ)− exp (−β2
n0τ1)

(σ − 1)β2
n0

+Hn(τ1, r)

}
, (41b)

in which

Hn =
2

σ − 1

∞∑
k=1

{
exp (−β2

n0τ1)− exp (−γ2
kτ1)

γ2
k − β2

n0

−exp (−β2
n0τ1/σ)− exp (−γ2

kτ1)

γ2
k − β2

n0/σ

}
J1(γkr)

γkJ0(γk)
.

It is an easy exercise to recover the result of (41a) by letting σ → 1 in (41b).
The higher-order solutions may be obtained, in principle, from (25a)–(25e) in a

similar fashion. However, the above leading-order solutions portray the salient flow
characteristics in sufficient detail.

5. Stability of the flow
In an effort to evaluate the feasibility of the analytically obtained flow of §§ 3 and

4, the issue of stability, within the specific parameter ranges of present concern, is
addressed. For a formal stability analysis, the analytical solution constitutes the basic
state, which, in dimensional form, is re-capitulated:

u∗B = εE
ΩR0

γM2
u(τ, r), v∗B = ε

ΩR0

γM2
v(τ, r),

p∗B = ρ∗00(R0)RT
∗
00(ρ00(r) + εp(τ, r)),

T ∗B = T ∗00(1 + εT (τ, r)), ρ∗B = ρ∗00(R0)(ρ00(r) + ερ(τ, r)),

where superscript ∗ stands for dimensional variables and subscript B the basic state.
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To examine the stability of the above basic-state flow, a small non-dimensional
perturbation (denoted by a tilde) is added:

u∗ = u∗B(τ, r) +
ΩR0

γM2
ũ(t, r, θ, z), (42a)

v∗ = v∗B(τ, r) +
ΩR0

γM2
ṽ(t, r, θ, z), (42b)

w∗ =
ΩR0

γM2
w̃(t, r, θ, z) (42c)

p∗ = p∗B(τ, r) + ρ∗00(R0)RT
∗
00p̃(t, r, θ, z), (42d)

T ∗ = T ∗B(τ, r) + T ∗00T̃ (t, r, θ, z), (42e)

ρ∗ = ρ∗B(τ, r) + ρ∗00ρ̃(t, r, θ, z), (42f )

in which t ≡ t∗Ω and τ ≡ t∗EΩ.
Expressions (42) are substituted into the governing compressible Navier–Stokes

equations. After undertaking the simplifications pertinent to the assumptions γ → 1.0,
σ ∼ O(1), E � 1, the linearized equations for the stability analysis are obtained:

M2 ∂ρ̃

∂t
+ ε

v

r

∂ρ̃

∂θ
+ ũ

∂ρ0

∂r
+ ρ0∇ · Ṽ = 0, (43a)

ρ0

(
∂Ṽ

∂t
+

ε

M2

v

r

∂Ṽ

∂θ
+ 2ek × Ṽ

)
− ρ̃

(
2εv +M2r + ε2

v2

M2r

)
er = −∇p̃, (43b)

∂p̃

∂t
+

ε

M2

v

r

∂p̃

∂θ
+

ũ

M2

∂p0

∂r
− T0

(
∂ρ̃

∂t
+

ε

M2

v

r

∂ρ̃

∂θ
+

ũ

M2

∂ρ0

∂r

)
= 0. (43c)

In the above, Ṽ indicates the non-dimensional perturbed velocity, Ṽ = ũer + ṽeθ +
w̃ez , (er, eθ, ez) the unit vectors in the (r, θ, z)-directions, and p0, ρ0 and T0 denote,
respectively, the non-dimensional basic states, i.e. p0 = ρ00 + εp, ρ0 = ρ00 + ερ and
T0 = 1 + εT .

To investigate stability, the perturbations in (43) are assumed to be of the form
ũ(r, θ, z, t)

ṽ(r, θ, z, t)

w̃(r, θ, z, t)

p̃(r, θ, z, t)

ρ̃(r, θ, z, t)

 =


û(r, θ, z)

v̂(r, θ, z)

ŵ(r, θ, z)

p̂(r, θ, z)

ρ̂(r, θ, z)

 exp (iω) =


ū(r)

v̄(r)

w̄(r)

p̄(r)

ρ̄(r)

 exp [i(ωt− mθ − kz)], (44)

in which ω = ωr + iωi is the complex frequency, and m and k the real azimuthal and
axial wavenumbers.

(a) Stability criterion for the case of ε ∼ O(E)
Neglecting the O(E)-term, the physical properties of the fluid at the basic state are

reduced to T0 = 1 and p0 = ρ0 = ρ00. Consequently, from (43c) and (44),

p̂(r) = ρ̂(r). (45)

The result shown in (45) is in accord with the analysis of § 4 for the inviscid region,
which ascertains that the process of physical property variations is isothermal and
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isentropic. It is recalled here that the entire analyses represent the leading-order
behaviour under the assumption E � 1.

Placing (44) into (43a) and (43b), together with (45), produces

iωM2p̂+ ρ00M
2rû+ ρ00∇ · V̂ = 0, (46a)

iωρ00V̂ + 2ρ00ek × V̂ −M2rp̂er + ∇p̂ = 0, (46b)

in which V̂ = ûer + v̂eθ + ŵez .
Undergoing a procedure similar to Gans (1974), the complex conjugate of (46a) is

taken, and it is integrated over the whole flow domain, after multiplication by p̂:

−iω+M2

〈
1

ρ00

p̂p̂+

〉
+M2〈rp̂û+〉+ 〈p̂∇ · V̂+〉 = 0, (47a)

iω〈ρ00V̂ · V̂+〉+ 2〈ρ00ek × V̂ · V̂+〉 −M2〈rp̂û+〉+ 〈∇p̂ · V̂+〉 = 0. (47b)

In the above + and 〈 〉 denote, respectively, the complex conjugate and integration∫ 1

0
( )2πr dr. By adding (47a) and (47b), and using the boundary condition V̂

+ · n = 0
where n denotes outward normal vector, yields

iω〈ρ00V̂ · V̂+〉+ 2〈ρ00ek × V̂ · V̂+〉 − iω+M2

〈
1

ρ00

p̂p̂+

〉
= 0. (48)

The vanishing of the real part of the left-hand side of (48),

ωi

{
〈ρ00V̂ · V̂+〉+M2

〈
1

ρ00

p̂p̂+

〉}
= 0,

requires that ωi = 0. This implies that the basic-state flow, given by the analytically
obtained solution of early sections, is stable within the specific parameter ranges of
present concern.

(b) Stability criterion for the case of O(E)� ε < 1.
The substitution of (44) into (43) produces

iΛρ̄+ Ūρ′0 + ρ0

[
dŪ

dr
+
Ū

r
− im

r
V̄ − ikW̄

]
= 0, (49a)

iρ0ΛŪ − 2ρ0

(
V0

r
+ 1

)
V̄ − ρ̄

(
(V0)

2

r
+ 2(V0) + r

)
= −dP̄

dr
, (49b)

iρ0ΛV̄ + ρ0((V0)
′ +

(V0)

r
+ 2)Ū =

im

r
P̄ , (49c)

iρ0ΛW̄ = ikP̄ , (49d)

iΛP̄ + ūP ′0 = C2
0 (iΛρ̄+ Ūρ′0), (49e)

in which V0 = εM−2v, P0 = p0/M
2, Λ = ω − m(V0)/r, (Ū, V̄ , W̄ ) = M2(ū, v̄, w̄),

C2
0 = T0/M

2 and the prime denotes differentiation with respect to r.
Equations (49a)–(49e) are identical to (2.11)–(2.15) of the paper by Lalas (1975)

which studied the stability of compressible swirling flows. It is noted that, in Lalas
(1975), σ = 1 (angular velocity of the pipe), and W = 0 (basic axial velocity). By
undertaking steps analogous to the analysis of Lalas, the stability criterion emerges:
the sufficient condition for stability is reduced to Ri > 1/4, where Ri is the effective
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Richardson number

Ri = N2

/(
dV0

dr
− V0

r

)2

.

In the above the effective Brunt–Väisälä frequency N is introduced,

N =

[(
ρ′0
ρ0

− P ′0
ρ0C

2
0

)
(V0 + r)2

r

]1/2

.

The details of mathematical manipulations can be found in Lalas (1975). In summary,
in the present analysis, for small but finite Rossby number O(E) � ε < O(1), the
basic-state flow is shown to be stable when the condition Ri > 1/4 is satisfied.

The principal findings of the foregoing stability analysis are summarized. When the
thermal perturbation at the wall is very small, ε ∼ O(E), the flow is absolutely stable.
In this case, the above theoretical solution represents a physically feasible flow.

When the perturbation at the wall is small but finite, O(E) � ε < 1, a further
consideration is in order. For small values of Mach number, the Richardson number
can be approximated as

Ri ≈ Crε−1 + O(M4),

in which

Cr ≡ − (T ′(0) +M2ρ00T
′(1))

r3ρ00

[
1

r +M2v(1)

d(v(1)/r)

dr

]−2

,

where T (0), T (1) and v(1) are given in (34a), (34b) and (41), respectively. The variations
of these functions with time are plotted in figures 5, 6 and 7 in § 6.3. It is observed
that, when the wall is heated, i.e. Tw > 0, T ′(0) + M2ρ00T

′(1) > 0, pointing to Ri < 0,
which implies instability (see figures 5, 6c and 7c). On the other hand, when the wall
is cooled, i.e. Tw < 0, it is seen that T ′(0) +M2ρ00T

′(1) < 0. Based on these arguments,
the parameter ranges for the sufficient condition for stability, Ri > 1/4, can be found:

0 6 ε 6 min
06r61
{Cr(r)}+ O(M4).

As emphasized previously, the major thrust of this paper concerns the transient
behaviour of a physically feasible flow. Detailed and in-depth discussions on the
stability issues are beyond the scope of this paper. In conclusion, the present analytical
solution represents a physically realizable flow when ε ∼ O(E). When O(E)� ε < 1,
the applicability of the present solution is restricted to the case when Tw < 0 and in
a limited range of ε as shown above.

6. Results and discussion
6.1. Comparisons with the numerical solution

Before proceeding further, a numerical solution for the temperature field has been
obtained to verify the analytical results. In order to solve numerically the temperature
equation (5), an explicit scheme is adopted:

σ exp
[− 1

2
M2(r2

j − 1)
]

[Tn+1
j − Tn

j ]

= E(∆t)[(Tn
j+1 − 2Tn

j + Tn
j−1)/(∆r)

2 + (Tn
j+1 − Tn

j−1)/(2rj∆r)],

where superscript n denotes the time step and subscript j the spatial grid point. For
the calculations, 201 uniformly spaced grid points (∆r = 0.005), together with the
time step E∆t = 10−5, were used.
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1.00
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T
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τ1 (    Et)

Figure 2. Comparison between the present analytic solution and the full numerical solution.
(a) Temperature profile at τ1(≡ E−1t) = 0.3. (b) Evolution of temperature at r = 0.5. M = 0.5 and
σ = 1.0. •, numerical solution; −−−, T (0) from (34a); ——–, T (0) +M2 T (1) from (34a) and (34b).

Comparisons between the numerical solutions and the analytical solutions are given
in figure 2 for M = 0.5. The temperature profile at t = 0.3 is shown in figure 2(a),
and the temperature evolution at r = 0.5 in figure 2(b). The analytical series solutions
were computed by summing to the 100th term. As is evident, the analytical solution,
which contains the zeroth and first terms [T ≡ T (0) +M2T (1)], is in broad agreement
with the full numerical solution. This establishes the accuracy and robustness of the
present analytical solution procedures for both the early-time and large-time stages.
As stressed earlier, the crux lies in the differences between the compressible- and
incompressible-fluid behaviour.

6.2. Short-time behaviour for t ∼ O(E−1/2)

The radial profiles of flow variables in the early stage near the wall are illustrated in
figure 3. The temperature variations cause alterations in the density field, and these
result in volume changes near the wall. Therefore, flows are induced in the radial
direction, which are apparent in the plots of figure 3. This evolutionary process is
characteristic of compressible-fluid flows.

The evolution of azimuthal velocity v in the interior is exhibited in figure 4(a).
As seen in figure 4(a), the strength of v is O(E1/4) in the early phase t ∼ O(E−1/2).
If an impulsive heating (cooling) is applied to the wall (which corresponds to a
positive (negative) Tw), the fluid in the immediate vicinity of the wall expands
(shrinks). This causes the afore-mentioned radially inward (outward) motion in the
bulk flow field. Since the interior region is essentially inviscid, angular momentum is
conserved. Consequently, the above-described radially inward (outward) flow causes
the azimuthal velocity to increase (decrease) accordingly. The overall pictures of
figures 3 and 4(a) are consistent with the above physical rationalization. In figure
4(a), the magnitude of v is seen to increase as the Mach number M increases or
the Prandtl number σ decreases. This is anticipated in the light of the fact that the
thermally driven fluid expansion (or compression) is more effective at larger M or
lower σ.

The evolution of radial velocity u in the interior is displayed in figure 4(b). Clearly,
the heating (cooling) at the wall induces a radially inward (outward) motion. The
radial flow intensifies as M increases or σ decreases, which is in accord with the
result for v. As time elapses toward t ∼ O(E−1/2), the induced radial flow diminishes,
as shown in figure 4(b). The evolution of density in the interior is depicted in figure
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Figure 3. Profiles of temperature (a), radial velocity (b) and density (c) near the wall at early
times. M = 0.3 and σ = 1.0. Times, τ ≡ E1/2t, are 0.05, 0.1, 0.3, 0.5, 1.0.

4(c). The radially inward (outward) motion causes the interior density to increase
(decrease).

As can be inferred from (19a) and (19b), the above-described motion in the interior
is essentially isothermal and isentropic, i.e.

T ≈ O(E1/2) and p ≈ ρ+ O(E1/2). (50)

It is recalled that, for an isentropic process, p ∼ ρr , from which (50) is recovered in the
limit γ → 1 and E → 0. Physically, it can be argued that, in the heavy-gas limit (γ → 1)
and for very small Ekman number, the thermal perturbation at the wall propagates
thermo-acoustically into the interior toward the axis as a compression (expansion)
wave for a positive (negative) Tw . The propagation speed is equal to the acoustic
velocity. The implication, therefore, is that there exists an additional characteristic
timescale of O(M), which is much shorter than the principal timescale of present
concern, O(E−1/2) (see e.g. Spradley & Churchill 1975; Ozoe, Sato & Churchill 1980;
Hyun & Park 1989). This also explains why the radial velocity u in figure 4(b) does
not converge to zero as τ → 0. A far more thorough analysis, introducing a shorter
timescale O(M), will be required to depict the thermo-acoustic wave. This is not
pursued in the present paper, since the impact of thermo-acoustic phenomenon is
small on the longer-time behaviour over t ∼ O(E−1/2) or t ∼ O(E−1) (see Ozoe et al.
1980; Hyun & Park 1989; Park & Hyun 1989).
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Figure 4. Interior azimuthal velocity v(a), radial velocity u(b) and density ρ(c) with time τ. The
radial position, r, is 0.5. In the top frames, the Mach numbers, M, are (i) 0.5; (ii) 0.3; (iii) 0.1.
σ = 1.0. In the bottom frames, the Prandtl numbers, σ, are (iv) 0.1; (v) 1.0; (vi) 10.0. M = 0.3.
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Figure 5. Temperature field at large times over the diffusion timescale. The top frames show T (0),
and the bottom frames T (1). σ = 1.0. (a) τ1[≡ Et] = 0.1, (b) τ1 = 0.3, (c) τ1 = 0.5.

6.3. Long-time behaviour for t ∼ O(E−1)

The series solutions at large times, elaborated in § 4, are computed by summing to
the 100th term.

The profiles of temperature are illustrated in figure 5. The lowest-order solution,
T (0) in (34a), and the first-order solution, T (1) in (34b), are plotted. As clearly
demonstrated, T (0) is exactly the solution to the diffusion equation, which is the case
of an incompressible fluid. The compressibility effect is contained in the first-order
and higher-order solutions. As time τ1[≡ Et] progresses, the region of substantial
values of T (1) is shifted from large radii to the entire flow field. As can be understood
from (25d), with the aid of the compressibility effect, the transitory time to reach
steady state is shortened. As M increases, the effective diffusion coefficient increases,
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Figure 6. Profiles of density ρ(0) (a), angular velocity v(1)/r (b) and temperature T (0) (c) in the
initial stage. σ = 1.0. Times, τ1 ≡ Et, are 0.001, 0.003, 0.005, 0.009.

which facilitates the thermal diffusion process. These observations are consistent with
the previous theoretical findings (e.g. Bark & Bark 1976; Park & Hyun 1997, 1998).

The radial profiles of leading-order density, ρ(0), angular velocity, v(1)/r, and tem-
perature, T (0), which are respectively calculated by using (37), (41a) and (34a), are
now described. Figure 6 exhibits the flow variables at very small times. The plots in
figure 6(a) demonstrate that, after a positive (negative) thermal impact is imposed
at the wall, a compression (expansion) of the inner interior fluid and an expansion
(compression) of the fluid near the wall take place. Inspection of figures 6(a) and 6(c)
reveals that these two regions are separated by a narrow zone of steep temperature
gradients, which will be termed the thermal front. The plots of angular velocity of
figure 6(b) similarly point to the division of the entire flow field into two regions: the
inner inviscid region at small radii and the outer viscous region at larger radii. As
remarked earlier, in the inner region, the isothermal–isentropic relation (p(0) = ρ(0))
prevails for t ∼ O(E−1). This implies that, at a given location in the inner region,
the initial angular momentum is conserved until this location is engulfed by the ap-
proaching thermal front and the thermo-acoustic disturbance propagates. Therefore,
at a location in the inviscid inner region, by the imposition of a positive (negative) Tw
at the wall, the spin-up (spin-down) process progresses through the radially inward
(outward) fluid motion until the thermal front reaches this location. This process is
akin to the conventional mechanically driven spin-up of an incompressible fluid in
a confined cylinder with rotating disks (Greenspan & Howard 1963). However, an
important difference should also be noted. For the conventional spin-up, the radial
motion is generated by the Ekman layer pumping at the disk. In the present problem,
the radial flow is initiated by thermal expansion of the fluid in the outer viscous
region. The angular velocity in the inviscid inner region is uniform, and its magnitude
increases as time elapses. Obviously, in the outer viscous region, angular momentum
is not conserved, and the angular velocity falls to zero as the radial position moves
toward the wall.
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Figure 7. Profiles of density ρ(0) (a), angular velocity v(1)/r (b) and temperature T (0) (c) in the
intermediate phase. σ = 1.0. Times, τ1 ≡ Et, are (i) 0.1; (ii) 0.2; (iii) 0.5.

The flow behaviour at a large time, i.e. after the thermal front has reached the ro-
tating axis, is depicted in figure 7. (The ensuing discussion is for Tw > 0.) Immediately
after the arrival of the front at the axis (see curves (i) in figure 7), the temperature near
the axis does not deviate much from the initial-state value. However, the temperature
increases with r, and it reaches the value imposed at the wall. Accordingly, the density
decreases at large radii. The angular velocity is higher at small radii since the radially
inward motion is sustained over a longer time. Alternatively stated, the fluid near the
rotation axis has undergone the inviscid spin-up process over a longer period than
the fluid at large radii (see curve (i) in figure 7(b)).

After the thermal front has reached the axis, the entire flow field is influenced by
the viscous effect, and diffusion of angular momentum takes place. Consequently,
the conservation of angular momentum is not sustained in the whole flow field. The
implication is that the attenuation of angular momentum is comparatively larger in
the near-axis region since the absolute magnitude of angular velocity was relatively
large there. By means of thermal diffusion, in the near-axis region, the temperature
increases, and, concomitantly, volume expansion of the fluid occurs, which generates
a radially outward motion. Therefore, for the fluid at large radii near the wall, the
density had been decreased previously by the expansion due to the initial imposition
of Tw at the wall. However, the fluid at large radii is compressed this time by the
previously described radially outward flow. At first glance, this compression at large
radii appears to be similar to the compression of the near-axis fluid by the early-time
radially inward propagation of the thermal front. However, a significant difference is
stressed. The early-time compression of the inner interior fluid is basically an inviscid,
isothermal–isentropic process; thus, the angular momentum is conserved. On the other
hand, the compression of the near-wall fluid at large times is a viscously controlled
diffusion process, in which the angular momentum is not conserved. This latter
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Figure 8. Evolution of radial velocity u(1)/r in the initial phase (a) and in the intermediate phase
(b). σ = 1.0. The radial positions, r, are (i) 0.8; (ii) 0.5; (iii) 0.2.

process leads ultimately to the loss of angular momentum at the wall. Therefore, a
fluid particle at a specific location moves radially inward initially and it moves radially
outward later. By the time when this particle reaches its original position, due to the
viscosity influenced loss of angular momentum during this excursion, the angular
velocity of this fluid particle is lower than its original value, i.e. the angular velocity
of the wall. This is represented in curves (ii) (at τ1 = 0.3) and (iii) (at τ1 = 0.5) of
figure 7, which show negative values of v(1). (Obviously, at sufficiently large times, due
to the diffusion of angular momentum from the wall, the entire flow field, together
with the wall, is in rigid-body rotation. This implies v(1) → 0 everywhere at very large
times.) The relative change in angular velocity over time is larger near the axis since
the loss of angular momentum is pronounced in the near-axis region.

The time-histories of radial velocity are illustrated in figure 8. At small times (see
figure 8(a)), since the thermal front is situated near the wall, the bulk of the flow
field is inviscid, and u(1)/r is largely independent of r. For a fluid particle whose
radial position is smaller than that of the thermal front, this fluid is pushed radially
inward effectively by the expansion at very large radii. On the other hand, if the radial
position of a particle is larger than that of the thermal front, volume expansions at
smaller radii take place, which quickly offsets the radially inward motions. These are
represented in figure 8(a), i.e. u(1)/r at a larger radius approaches zero at a faster rate
than at a smaller radius.

The long-time behaviour of u(1) over the diffusion timescale is depicted in figure
8(b). As stated, in the early stage, u(1) is negative, i.e. directed radially inward, due
to the expansion of the near-wall fluid. Consider a fluid particle at a specific radial
location rp. From t = 0 to the moment when the thermal front arrives at rp, i.e.
over the period when the thermal front is situated between r = rp and r = 1, the
fluid particle undergoes thermo-acoustic compression, which generates the radially
inward motion. When the thermal front has passed this location rp radially inward,
the fluid at r < rp expands, which contributes to the generation of radially outward
velocity at rp. The overall radial velocity at a specific location, therefore, crosses
zero at an intermediate time. Afterward, the radially outward velocity outweighs the
radially inward velocity, as shown in figure 8(b). At still larger times, the global flow
field settles down to the final steady state, and u(1) tends to zero accordingly. The
switchover of u(1) from the radially inward direction to the radially outward direction
takes place earlier for a fluid particle located at a further radial position.

The time history of angular velocity, v(1)/r, is displayed in figure 9 as solid lines.
For reference, the temperature is shown as dashed lines. Figure 9(a) pertains to the
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Figure 9. Evolution of angular velocity v(1)/r in the initial phase (a) and in the intermediate phase
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early phase. This picture reinforces the assertions on the propagation of the thermal
front and the selective expansion of fluid in the regions ahead of and behind the
front. As ascertained, for a fluid particle at a specific location rp, until the arrival
of the thermal front, the radial velocities are radially inward. This gives rise to a
rapid build-up of angular velocity (note the slope of v(1) curves in figure 9a). The
major mechanism here is based on the conservation of angular momentum, which
is in line with the isothermal–isentropic process. After the thermal front has passed
this location, expansion takes place in the inner region ahead of the front, which
contributes to the generation of radially outward motion at rp. Consequently, a
decrease of angular velocity results. It is again emphasized that this is a viscosity-
influenced process in which conservation of angular momentum does not hold. The
overall evolution of v(1)/r over the diffusion timescale is shown in figure 9(b). At small
times, due to the presence of radially inward flow, the angular velocity increases based
on the isothermal–isentropic process in which the angular momentum is conserved.
At intermediate times, the viscously controlled diffusion of angular momentum takes
place. In this phase, the angular velocity decreases accordingly, and the fluid particle
experiences radially outward motion. By the time when the fluid particle returns to its
original position, the angular velocity is negative, which reflects the afore-mentioned
loss of angular momentum over the period. At still later times, the angular velocity
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Figure 11. Evolution of density ρ(0) (a) and pressure p(0) (b). σ = 1.0. In (a), the radial positions, r,
are (i) 0.1; (ii) 0.3; (iii) 0.5; (iv) 0.7; (v) 0.9.

at a location slowly regains angular momentum which is diffused from the wall.
At a very long time, both the fluid and the wall are in solid-body rotation, and v(1)

approaches zero. The above physical rationalization is revealing. In summary, at small
times, the fluid rotates faster than the wall: the wall imparts a frictional drag to the
fluid. At intermediate and large times, the angular velocity of the fluid is lower than
that of the wall: the fluid imparts a frictional drag to the wall.

It is useful to define the wall shear stress τw from (41a)–(41b):

τw =
τ∗w

Eρ∗00(R0)(ΩR0)2
= − 1

M2

dv

dr
,

in which superscript ∗ denotes dimensional quantities. It then follows that

τw = τ(0)
w + O(M2) = −

(
dv(1)

dr

)
r=1.0

+ O(M2). (51)

The evolution of τw is plotted in figure 10. As delineated in the above, at small
times τw is positive, for which the wall produces frictional resistance for the fluid. At
intermediate times, τw is negative, in which the wall rotates faster than the fluid. At
still larger times, the fluid and the wall reach solid-body rotation, and τw vanishes.
This behaviour is unique to a compressible fluid. For an incompressible fluid, no
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change in τw is expected due to a sudden alteration of the wall temperature. The crux
of the argument is that, for a compressible fluid, a step-change in wall temperature
brings about both the transfer of angular momentum and the conventional heat
transfer through the wall.

The overall evolution of density ρ(0) and pressure p(0) is portrayed in figures 11(a)
and 11(b), respectively. At very small times, in the near-wall region, density decreases
due to the expansion caused by the temperature increase. In the inner region, the
fluid undergoes the thermo-acoustic compression, which leads to an increase in ρ(0).
At intermediate times, the thermal front moves close to the axis, and the temperature
in the inner region increases, which gives rise to an expansion. In summary, in the
near-wall region, ρ(0) decreases in the early phase and ρ(0) increases at intermediate
times. In the near-axis inner region, a qualitatively opposite process is discernible. At
still larger times, as the final steady state is approached, ρ(0) tends to zero, and the
density field regains the initial profile.

As is evident in (36), the lowest-order pressure field is spatially uniform, which is
reflected in figure 11(b). The physical explanation is that, if a spatially non-uniform
pressure field is present, a pressure wave, which propagates at the sonic velocity, is
developed in order to smooth out this non-uniformity. Thus, the timescale for the
removal of spatial-non-uniformity of the pressure field is given as O(M), which is
far shorter than the overall diffusion timescale O(E−1). It is recalled that the present
discussion is concerned with times of O(E−1), which points to the existence of a
spatially uniform pressure field. At very large times approaching the steady state,
p(0) → Tw , ρ(0) → 0, which implies that the effect of the imposition of Tw at the wall
ultimately appears in a global increase of pressure.

7. Conclusions

The transient adjustment process of a compressible fluid in a rapidly rotating pipe
is studied. The motion is initiated by imposing a step-change in the wall temperature
Tw .

Over times of O(E−1/2), near the wall a thermal boundary layer of thickness O(E1/4)
exists, and a radial velocity of O(E3/4) is developed. The disturbance propagates into
the bulk of the interior in the form of thermo-acoustic compression. This interior
motion is an inviscid isentropic process in which angular momentum is conserved. On
this timescale, in the inviscid interior, v, ρ, p ∼ O(E1/4), u ∼ O(E3/4) and T ∼ O(E1/2).

Over diffusive times of O(E−1), the mechanism is far more complex and intriguing.
At times before the thermal front has reached the axis, the flow domain can be
divided into two regions. One is the inviscid region ahead of the front, in which the
afore-mentioned thermo-acoustic compression continues to prevail. The other is the
viscous region behind the front, in which conservation of angular momentum no
longer holds. After the thermal front has reached the axis, the entire flow field is
viscously influenced. In the near-axis zone, the temperature increases rapidly toward
the final steady state, which causes a volume expansion. Therefore, a radially outward
flow is generated. In summary, at early times, the fluid rotates faster than the wall;
but at intermediate times, the rotation rate of fluid is lower than that of the wall. At
still larger times, both the fluid and the wall approach solid-body rotation.
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